
AD-A266 359
SCIENCE 1
CONSORTIUM, INC.

TESTING AND EVALUATING C31 SYSTEMS
THAT EMPLOY AI

(CLIN 0001)

VOLUME 2: COMPENDIUM OF LESSONS LEARNED
FROM TESTING AI SYSTEMS IN THE ARMY

Monica M. Constantine and Jacob W. Ulvila

Decion Science Consortium, Inc, D T IC
1895 Preston White Drive, Suite 300 - L ECTE

Reston, Virginia 22091 JN 2 9 1993January 1991 E D

Final Report
Period of Performance: 16 September 1988. 15 September 1990

Contract Number: DAEA18-88-C-0028
PR&C Number: W61DD3-8057-0601

AAP Number: EPG 8048

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared for:
U.S. Army Electronic Proving Ground

AMTN: STEEP-ET-S (Mr. Robert I, Harder)
Fort Huachuca, Arizona 85613-7110

The views, opinions, and/or findings contained in this report are those of the authors and should not be
construed as an official Department of the Army position, policy, or decision unless so designated by other
documentation.

93-14749
TECHNICAL REPORT 90-9 ! ... I " " 1111 "I

2 90ll

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE A r

.Is. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified

Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIIUTIONIAVAILABILITY OF REPORT

2b....... IDWGAIGSHApproved for public release; distribution
b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

90-9

6.. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 74. NAME OF MONITORING ORGANIZATION

Decision Science Consortium, (IUS.rcabl.) US Army Electronic Proving Ground
Inc. STEEP-ET-S

6c. ADDRESS (ity,' Scttr, and ZIPCode) 7b. ADDRESS (City, Statre, end ZIP Cod) '

1895 Preston White Drive, Suite 300 Ft. Huachuca, Arizona 85613-7110
Reston, Virginia 22091

Bg, NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

STEEP-ET-S DAEA-18-88-C-0028
SC. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO NO IACCESSION NO.

11. TITLE (Include Security Classwitficaon) TESTING AND EVALUATING C3 , SYSTEMS THAT EMPLOY Al --

VOLUME 2: COMPENDIUM OF LESSONS LEAILNED FROM TESTING Al SYSTEIS IN THE ARMY•

12. PERSONAL AUTHOR(S) Monica M. Constantine and Jacob W. Ulvila

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15,. PAGE COUNT

Final Technical FROM Sep 88 TO 902 j 1 1991, January 31 58

16. SUPPLEMENTARY NOTATION The views, opinions, and/or findings contained in this report are
those of the authors and should not be construed as an official Department of the Army
position. policv, or decision unless so designated b, other documenration.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and tdenty by block number)
FIELD GROUP SUB-GROUP Expert Systems, Testing, Knowledge-Based Systems, Artificial

Intelligence, Multiattribute Utility

19. ABSTRACT (Continue on reverse if necessary and Identity by block number)

The field of knowledge-based systems has recently recognized the importance of verification,
validation, and testing. This volume presents the results of a survey of the testing
practices of knowledge-based systems developers. Common testing strategies are reported
and analyzed. Factors affecting testing are discussed. A comprehensive approach to

evaluation is described. General conclusions and lessons learne6 are presented.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

M UNCLASSIFIEDIJNLIMITED [3 SAME AS RPT C3 DTIC USERS Unclassified

"22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (IncluOe Area Code) 22c OFFICE SYMBOL

Mr. Robert J. Harder (602) 538-2090 STEEP-ET-S

DD Forrm 1473. JUN 86 Previous editons are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

ii

CONTENTS

Page

SECTION 1.0 OVERVIEW. 1

2.0 DATA COLLECTION 2

THE INTERVIEWS 2
SUMMARY OF INTERVIEWS 6
SURVEY OF ARTIFICIAL INTELLIGENCE IN THE ARMY -
SUMMARY 8

3.0 GENERAL FINDINGS AND LESSONS LEARNED 11

CHARACTERIZATION OF THE EXPERT SYSTEM DEVELOPMFENT
ENVIRONMENT II
CHARACTERIZATION OF COMMON TESTING STRATEGIES IN
TERMS OF THE ENVIRONMENT 14
CHARACTERIZATION OF COMMON TESTING STRATEGIES IN
TERMS OF THE MAU HIERARCHY 16
CONSTRAINTS TO TESTING 21

Hardware Constraints 21
Interoperability Constraints 21
Data Constraints 22
Tool Constraints 22
Documentation Constraints 23
Personnel Constraints 23
Resource Constraints 24
Intended Use 24

LESSONS LEARNED/RECOMMENDATIONS FOR TESTING 24

APPENDIX A: POINTS-OF-CONTACT 26

B: SELECTED INTERVIEWS 28

C: SURVEY OF ARTIFICIAL INTELLIGENCE IN THE ARMY 41

SURVEY CONDUCTED 41
TABUIATION OF SURVEY RESULTS 45

D: LESSONS LEARNED 49

iii

CONTENTS (Continued)

Page

TABLES

TABLE 1: Compendium of Lessons Learned: Questions
and Issues 3

2: Characterization of Testing Strategies in
Terms of Developmental Environment 15

FIGURES

FIGURE 1: A MAU Framework for Integrating Test and
Evaluation Criteria 12

2: Prototype Forever, Agreement, Compliance,
and Field Testing Strategies Characterized
in Terms of MAU Framework 17

3: Satisfaction and Case-Dependent Strategies
Characterized in Terms of MAU Framework 18

4: Multi-Faceted Strategy Characterized in Terms
of HAU Framework 19

5: Organizational Testing Strategy Characterized
in Terms of MAU Framework 20

iv

1.0 CVERVIEW

This volume presents the results of the compendium of lessons learned

performed on the Phase 2 small business innovative research (SBIR) project on

"Specifying, Testing, and 2'valuating Systems that Employ AI." The objective

of the compendium of lessons learned was to determine the state of the

practice for testing knowledge-based systems in the Army and to assess the

impact of those experiences on methods and procedures for testing knowledge-

based systems. The compendium of lessons learned resulted in two articles:

one for the IJCAI-89 Workshop on Verification, Validation, and Testing of

Knowledge Based Systems, and one that was more generalized for publication in

Expert Systems with Applications: An International Journal. The first

article presented the findings of the interviews conducted and summarized the

lessons learned. The second article geiteralized the findings for a broader

audience. The articles are found in Volume 4 of the final report.

This volume serves to describe in more detail the interviews and

presents the general findings based on these interviews. Section 2.0

describes interviews and Section 3.0 presents the generalized findings and

lessons learned.
Accesion For

NTIS CRA&i

DTIC TAB
Ur.announced 5
Justification

By..........

Dist. ibution I
Availability Codes

Avail and (or

Dist Special

1 !/

2.0 DATA COLLECTION

THE INTERVIEWS

Potential candidates were selected from various AI Activity Point of

Contact lists Generally, information on contacts came from one of three

sources: the points-of-contact for AI activities pubiished in the Al Exchange

newsletter prepared by the U.S. Military Academy Office of Al Analysis and

Evaluation, the list of Artificial Intelligence Projects, FY90-91 prepared by

the Office of the Deputy Chief of Staff for Logistics, and from information

obtained at the AI proponency conference held in the summer of 1989.

The interviews were primarily conducted with Army representatives local

to the Washington D.C. area. Additionally, telephone interviews were con-

ducted with representatives that were out of state in order to obtain

representation from the various major commands. Generally, the in-person

interviews were more informative than the telephone interviews. The

interviews conducted in person usually took between I and 2 hours. In all

cases of the in-person interviews, the participants were very cooperative and

willing to share information. The telephone interviews were not as

successful; it was much easier for the interviewee to give short quick answers

rather than discuss the problems faced in testing expert systems. (Appendix A

to this volume contains the points-of-contact used for the compendium.)

The interviews were relatively open-ended. A list of issues was

developed prior to the interview, and the interviewer used the list to direct

the interview and took notes on the discussion. The role of the interviewer

was basically one of listener while the interviewee did most of the talking.

The questions and issues for the interviews are listed in Table 1. The list

includes questions relating to a general description of the system, why the

system was considered AI, requirements for the system, the type of testing

performed, the properties of the system tested, the techniques used for

testing, testing tools, and general comments and advice to others.

2

Table 1: Compendium of Lessons Learned: Questions and Issues

System Description

1) The size of the program as well as databases.
2) The criticality of the system.
3) The required software reliability.
4) The critical or unique aspects of the system.
5) The stage in the life cycle.
6) The importance of execution time and time to solution.
7) The machine used and storage constraints.
8) The intended user of the system, whether or not a 'human" equivalent to the system exists,

the user's interaction with the system, and the setting in which the software is designed to
be used.

9) The language used to develop the system. Is the language used to develop the prototype
different from the language used to develop the operational system?

10) The maintenance of the system. Does the end user have the ability to modify the rule
base?

Other System Issues

1) The use of software tools and shells.
2) The formality of the development environment.
3) The software developer. Was the system developed by the end user, expert, or software

group? Was the system developed in-house or by a contractor.

Why is the System Considered Al

1) Is the system problem-oriented? Does it solve a problem previously performed using
human judgement and experience?

2) Is the system technique-oriented? Can the system be identified with an Al programming
strategy? Is it based on heuristics and representations?

3) Does the system use deep knowledge? Does th,• system model particular world principles
or use axioms and laws to make inferences and deductions?

4) Does the system use surface knowledge--rules-of-thumb human experts commonly deploy?
5) What defines an "expert?"

Requirements for the System

1) Were requirements generated formally or informally?
2) Does documentation exist? If not, how are requirements defined and communicated?
3) How frequently do the requirements change?
4) Was a prototype used to help define requirements?

3

Table 1: Compendium of Lessons Learned: Questions and Issues (continued)

Pieces of the Software Tested

1) The inference engine, logic scheme, or algorithms.
2) The knowledge base.
3) The user interface.
4) The interaction between the man and the machine.
5) The model (especially important if using deep knowledge).

Type of Testing

1) Is each piece of the software tested?
2) Is the software tested against some standard? What is the standard; how was the standard

defined?
3) Does "ground truth" exist?
4) How was the expert's opinion used in the testing process?
5) Were single or multiple experts used to test the software?
6) Was the software tested against requirements?
7) Was the software tested with the end user?
8) Is testing intcgrated with the life cycle of the expert system?
9) Is more emphasis placed in one phase of the life cycle than another?

Properties Tested

1) System effectiveness.
2) Quality and success rate.
3) Timeliness of responses.
4) Accuracy.
5) Bias.
6) Error handling.
7) Organizational effectiveness (how well does the software fit with the intended user and the

work environment?).

Testing Techniques

1) Static testing versus dynamic testing.
2) Use of automated testing tools.
3) Use of a controlled experiment.
4) Test case selection. Determining a comprehensive set of test cases.
5) Use of actual data, use of simulated data in testing.
6) Stress testing.
7) Testing the knowledge base. Does the system know what it does not know?
8) User testing--use of a novice or expert; single or group of users.
9) Were the same test cases used in development and testing?

10) Were the same experts used in design and testing?

4

Table 1: Compendium of Lessons Learned: Questions and Issues (continued)

Testing Tools

1) Was a testing tool used?
2) What features of the testing tool were used?
3) Were the tools easy to use?
4) Did using the tools help isolate faults or failures in software that made their use justified?
5) Were metrics used? How were the metrics interpreted?
6) When does testing stop?
7) What features of the tool would be most beneficial?
8) Were testing tools tried, but not used?
9) What kind of testing tools would make the job of a software tester easier?

Other

1) Was testing formally in the process or was it an afterthought?
2) Were any standards (formal or informal) used for languages and/or shells?
3) Was uncertainty used? Which form?
4) What was the development model?
5) What was the greatest difficulty or biggest stumbling block?
6) Can you provide any advice for others testing a similar system?

5

SUMMARY OF INTERVIEWS

The interviews indicated the diversity of expert system applications in

the Army. Knowledge-based systems have been developed for battle management,

hazardous material classification, contract clause selection, in-house support

for medical research (vaccine testing and immunization scheduling), and

assigning a benefit rating for psychiatric disability compensation. The

interviews presented in Appendix B represent the variety of expert system

applications and testing methods. Basically, the variety of testing

approaches were classified into eight commonly employed strategies: prototype

forever, agreement, compliance, satisfaction, case-dependent, organizational

testing, field testing, and multi faceted.

(1) Prototype Forever. The expert receives the latest version of the
software and uses it in an actual setting. The expert monitors
the system in use and provides feedback on the interface, the
explanation facility, and the reasonableness of the system's
outputs over time.

(2) Agreement. As the system is being developed, it is tested with
the expert. When an initial version of the system is complete, a
sample of test cases is selected based on actual data. The test
cases are given to an expert or a panel of experts who is asked
to determine the outcome. The same set of test cases is presented
to the system and the system determines the outcome. The system
passes the "test" if the system and panel of experts agree on the
outcome for some percentage (e.g., 85%) of the test cases. The
system is put into use and monitored over time.

(3) Compliance. Test cases are selected based on past history. Those
cases are presented to the system, the system's performance is
compared with the historical results, and appropriate changes are
made. Another set of test cases is selected from current data
where the outcome is not yet known. These cases are presented to
the system and the output is correct if it complies with the
relevant regulations.

(4) Satisfaction. The developer examines the knowledge base for
missing rules, rules that can be collapsed, and rules that are not
being fired. The expert subjectively assesses the correctness of
the rules, the quality of the explanations, and the quality of the
answers. The user assesses his or her ability to interface with
the system, the timeliness of the response, the reasonableness of
the outputs and explanations, and how the system fits in with the
operating environment.

(5) Case-Dependent. The developer examines the knowledge base,
assesses the effect of adding rules, determines if rules can be

6

ombined, and looks for errors. A large skmple of test cases is
selected that approximates the population of cases the system will
receive. The expert assesses the answer to test cases without
using the system. Then, the expert uses the system to obtrin
outputs (all of the expert's actions are saved). The saved data
reflecting the expert's actions are analyzed and changes are made
to the knowledge base. It is necessary for the expert and system
to agree some percentage (e.g., 80%) of the time. The system is
then tested with the non-expert users. The non-experts interpret
the input data from summary sheets and the differences in data
input between the expert and non-expert are examined and
appropriate changes are made to the system.

(6) Organizational Testing. The interface is iteratively evaluated by
the user. Interface evaluation includes an assessment of screen
design, feedback message placement, scrolling, features, menu
naming, design, and actions. The system is evaluated in a
classroom setting by observing the system in use and administering
questionnaires. Observers videotape and take notes to assess how
both students and instructors use the system in an actual
classroom setting. Questionnaires are administered to both
students and instructors to gather information regarding features
used, perceived usefulness, perceived problems, and general
feelings. An experiment using subjects in an actual classroom
environment is designed to assess the effec.. of using the system
on student performance.

,7) Field Testing. Each prototype is tested with past cases from
saved actual data. The system is tested in a similar operational
environment for several (e.g., 3) months to obtain feedback on
system effectiveness and user interface. Appropriate changes are
made to the system. The system is then run in parallel with the
existing process in the intended operational environment for
approximately one year. During the parallel test, assessments are
made as to how well the system is meeting the goals stated in the
requirements document.

(8) Multi-Faceted. The developer performs a comprehensive static
analysis of the knowledge base using automated tools. Dynamic
testing is performed to test the system with the expert using a
comprehensive set of test cases not used in development. Multi-
attribute analysis is used to obtain subjective measures for
system performance. The system is tested with "developer" experts
as ,ell as outside experts. Questionnaires are administered to
both developer experts and outside experts.

Despite the diversity of systems represented in the interviews and the

different approaches to testing, the systems were all quite similar in their

goals. Most functioned as an aid to a decision maker rather than as a

decision maker. Generally, the systems reduced the amount of time it takes to

perform a speciff- task or added consistency to a task that is performed

7

differently by different individuals. Although the size of the system's rule

bases varied, most contained information from regulations as well as subject-

area experts.

Most developers worked in a relatively informal development environment

without documented requirements. The system requirements evolved from an in-

house need or from an existing program. The smaller systems were generally

developed using an expert system shell, while the larger systems were

generally developed with a lower-level computer language such as LISP or C.

Most of the systems were developed as prototypes and used rapid prototyping as

a development methodology. The lack of information on test methodologies, the

lack of documented requirements, and the 'fuzzy' nature of knowledge-based

systems generally made testing difficult. Generally, time, resources, and the

lack of information had a large impact upon the amount of testing performed.

SURVEY OF ARTIFICIAL INTELLIGENCE IN THE ARMY - SUMMARY

In addition to the interviews, a survey of Al in the Army was

distributed at the May 1990 Army Al Proponency Conference. The purpose of the

survey was to update some of the information obtained in the interviews and to

reach organizations that were not included in the initial compendium of

lessons learned. The survey also verified some of the conclusions drawn from

the compendium of lessons learned. The survey asked questions pertaining to

the level of effort expended, the primary mission of an Al system, testing

strategies, factors that affect testing, the aspects of Al systems that were

tested, and the importance of traditional quality factors for an Al system.

The survey also asked the respondents to identify areas in which future wolk

is needed. This section presents the general results of the survey. Appendix

C contains a copy of the survey used an a tabulation of the results.

Level of Effort. The majority of Al systems were small, requiring
fewer than 24 man-months of effort. Only one office was
developing a very large system that required more than 60 man-
months.

Development Environment. The most common platform for Al systems
development seems to be microcomputers and workstations. Seven of
the twelve respondents had at least some systems developed with an
Al shell and seven of the respondents had at least some systems
developed using an AI language such as Common LISP. The most

8

common kind of Al systems developed were expert systems. Few
offices created intelligent tutoring, natural language, or neural
network systems. Only one office was developing a system that was
classified as an image recognition system.

System Classification. The survey asked the respondents to
classify the systems as mission critical, assisting an expert,
assisting a novice, and as systems that operate autonomously.
Four out of twelve offices surveyed said that they were developing
at least one mission critical system and two offices said they
were developing a system that was designed to operate
autonomously. However, the majority of systems were designed to
assist either an expert or novice in solving a problem.

System Distribution. Three offices were creating systems whose
users are outside the developing organization. However, most
organizations developing systems are users as well as developers.
All of the offices surveyed were developing at least one system
that would be widely distributed within the Army.

Testing Strategies. As a result of the interviews, eight common
testing strategies were identified. The respondents were asked if
any of their AI systems were tested with similar approaches.
Prototype forever was listed as the most commonly used approach,
followed by agreement, field testing, and satisfaction. Case-
dependent and organizational testing were the least commonly
applied strategies. Two organizations represented by the survey
used a multi-faceted testing approach on at least some of the AI
systems developed.

Factors that Affect Testing. Based on the interviews, four
factors were found to affect the amount of testing performed on an
AI system-time, resources, information available on testing, and
the development environment. The respondents were asked to rank
the factors on a scale of one to five, where five represented a
large impact. Overall, time and resource constraints were listed
as the factors having the most impact on testing. Both
information available on testing and the development environment
were rated as important, but to a lesser degree than time and
resources.

Aspects of an Expert System. The respondents were asked how often
and how important the different aspects of an expert system were
in testing. The survey used the aspects addressed in the MAU
hierarchy, the structure and content of the knowledge base, the
inference engine, the service requirements, performance, and
usability. Performance, usability, and the structure and content
of the knowledge base were listed as the aspects that were tested
most often, as well as the aspects that were most important.
Testing service requirements and the inference engine were viewed
as less important and were also aspects that received the least
amount of testing.

9

Software Quality Factors. The survey listed 11 quality factors
used in traditional software testing and the respondents were
asked to rank the importance (high, medium, and low) of these
factors in testing AI software. On the average, none of the
software quality factors received a low ranking. Usability,
reliability, and correctness were ranked as the most important
factors, followed by testability, flexibility, interoperability,
portability, maintainability, integrity, and reusability.

Future Work. The survey listed 11 possible areas for future work
and asked the respondents to rank (high, medium, or low) thi
importance of future work. The following list shows the subject
areas, as well as the average ranking received:

High: Develop automated static testing tools for analyzing
the consistency and completeness of knowledge bases.

Medium: Develop methods and aids for determining the
accuracy and built-in bias of an expert system. Periodi-
cally update and publish a compendium of lessons learned
from efforts to test Army AI systems. Collect and publish
an anthology of articles on testing AI.

Medium-Low: Develop methods for testing the validity of
"confidence" or "uncertainty" factors which are used in
expert systems. Develop an automated means for assessing
user acceptance. Develop a tool to generate requirements
against which an AI system can be tested. Develop a
computer pro-ram to help perform multi-faceted testing. Try
out AI testing methods in a testbed. (Only one office
indicated that it may be able to serve as a possible
testbed.)

10

3.0 GENERAL FINDINGS AND LESSONS LEARNED

This section lists characteristics of the typical development

environment and characterizes the eight testing strategies in terms of the

development environment and the MAU hierarchy shown in Figure 1. Volume 1

contains more detailed information of the MAU hierarchy. The section

concludes by summarizing some of the lessons learned, particularly as they

relate to testing. (Please refer to Volume 4 of the final report for

additional information on the lessons learned.)

In addition, the lessons learned were influenced by our attempts to

apply the extensive testing methods described in Volume 1 to several expert

systems. These systems included an intelligence expert system, a railroad box

car assignment expert system, and a vehicle test equipment configuration

expert system. For reasons of timing and resource constraints, these attempts

were not totally successful and were not completed.

CHARACTERIZATION OF THE EXPERT SYSTEM DEVELOPMENT ENVIRONMENT

This section presents a summary of the development environment, based on

information obtained in the interviews, and the survey.

Hardware. Typically, the systems were designed for use on PCs and
workstations. However, some systems were developed for
mainframes, Symbolics, and SUNs.

Does the System Need to be Ported to Another Machine? About half
the systems will need to be ported to a different machine before
they can become operational.

Is the Machine Operating Near its Limits? In most cases, the
machine is not operating near its limits.

Was a Shell Used? Generally, developers in the Army use expert
system shells. The various shells used were: Ml, KREME (object-
oriented), FLAVORS (object-oriented), KEE, LEVELS, Ist Class,
XPER, XSYS, CLIPS, and ART. A smaller number of systems are
developed with an AI language such as Common LISP.

Other Development Tools Used. Typically, other development tools
were not used. In one case, a system included a Hypertext module.
Static Analysis Tools. Typically, these were not used because

they were not available.

11

z
_ 0

zz a I.

ui cn

z z J

w
w Lw
CL z

L)U
u-)

wo
0L 0Q CC)x

a, 0

_ c

_U a. -

> Q

ww

> cc w W 0 Z.Q

LU D -'--0zu 0

U- tz c).t

0 wn L,, 0 LZ

U) R ccLL >-C
u1 -E Uw-C

*L I

012L wDL

Access to Other Systems. Typically, the systems did not need to
access or interface with other computer systems.

Access to Databases. Typically, systems did not have to access
other existing databases. However, there were cases where access
to a large database was a critical aspect of the system.

Access to Material about the Domain. In almost all cases, there
was some limited amount of information regarding the domain
(typically in a regulation).

Is there a Recognized Authority in the Domain Area of the System?
Typically, there was no one recognized authority.

Documented Standards. Typically, there was no documentation on
expected performance, input domain, or scope of application.

Documented Test Plan. Typically, there was no documented test
plan.

Primary Mission. Most systems were primarily designed to assist
either an expert or novice in solving a problem. There are a few
systems that would be classified as mission critical and even one
system that was designed to operate autonomously.

Most Critical Part of the System. In most cases, the most
critical part of the system was the knowledge base.

Intended User. The systems were designed for use by both experts
and nonexperts. Typically, the developing organization was also a
user of the system.

Distribution. Typically, systems are distributed widely within an
organization. However, there are a few systems developed that
will be widely distributed within the Army.

Early Involvement with Intended Users. When the intended users
are not the same as the experts, the intended users were not
involved early in the development or testing process. (In some
cases, the intended users were not involved in either testing or
development.)

Availability of Experts. Typically, it is very difficult to get
the expert's time.

Availability of Users. When the intended users are a different
group from the experts, they generally have not been considered in
the development and testing process. For some systems, accessing
typical users would be a possibility.

Test Cases. Typically, a limited number of test cases are
available.

13

Same Test Cases used in Development and Testing. Typically, some
test cases are withheld and not used in development. However,
some systems have used the same set of test cases for both testing
and development.

Mission Criticality. Only a few systems were classified as
mission-critical.

Developed as Prototype. All of the systems were developed
iteratively as prototypes.

Is the System Operational? There are plans for about half of the
systems to become operational after further development. A few
are currently operational.

Who is the Developer? Most systems were developed by contractors;
others were developed by in-house Army personnel.

* Resources. Generally resources are tightly constrained.

* Is the System Tested Iteratively?. Almost all of the systems were
tested iteratively throughout the development process and did not
have a formal test phase.

What Part of the System was Emphasized during Development,
Testing? The survey indicated that the knowledge base, perfor-
mance, and usability were aspects that were both important and
frequently tested. However, in the interviews, it seemed that the
knowledge base was emphasized during development, and the
correctness or reasonableness of the answers (as judged by the
expert) was emphasized during testing.

CHARACTERIZATION OF COMMON TESTING STRATEGIES IN TERMS OF THE ENVIRONMENT

Table 2 characterizes the eight testing strategies in terms of the

development environment. All of the testing strategies except organizational

testing, field testing, and multi-faceted testing were used in informal

development environments where there were no documented requirements or test

plan. The prototype forever, agreement, and compliance strategies were

typically used when the expert system was designed for a small number of in-

house users. Even though the expert's time was generally very difficult to

obtain, all of the testing strategies (except compliance) used the expert in

the testing process.

14

10 0 0 0 2 0

(0 owo

0000

04)
8~

PW
0

I#,

U,

00 a-

fa 0 c

.. 1j 3: 1 WO *WO - 40

15 0 '

CHARACTERIZATION OF COMMON TESTING STRATEGIES IN TERMS OF THE MAU HIERARCHY

Figures 2 to 5 characterize each of the testing strategies according to

the MAU hierarchy. The shaded items on the hierarchy indicate whether the

attribute was addressed by a particular testing strategy. At some level, all

of the common testing strategies addressed correctness of the answer and

correctness of the reasoning. All of the systems were judged against some

standard, although in many cases that standard was simply a vague notion of

"correctness." For example, in agreement testing, the system's output was

stamped "correct" if it agreed with the outcomes specified by a panel of

experts for 85% of the test cases. In case-dependent testing, great care was

taken to select a set of test cases that approximated the kinds of cases the

system would be expected to handle in an operational environment, but all of

the cases used in testing were also used in development. In field testing,

the system was judged "correct" if it met a few performance criteria (such as

a 30% reduction in downtime) specified in a requirements document.

In one particular project-an intelligent tutoring system---correctness

was not as important as clarity of reasoning, usability, or how well the

system fit into the intended operational environment. These testers used

organizational testing because the other testing strategies did not

sufficiently address either usability or fit with the organization.

Many of the testing strategies (prototype forever, agreement,

compliance, and field testing) did not directly address either the structure

or content of the knowledge base. The satisfaction and case-dependent

strategies insufficiently addressed testing the knowledge base due to the lack

of automated tools for static analysis. Most of the developers realized the

importance of structural or static testing but, without automated tools,

lacked the resources or time to do as much testing as they would have liked.

Only the multi-faceted testing strategy used an automated static analysis

tool, and it was developed especially for the particular application.

Most of the knowledge-based systems made use of one of the many expert

system shells available on the market, and no testing was specifically aimed

at the inference engine of the shell. Most developers assumed that, when they

purchased a shell, the inference engine had already been tested thoroughly.

16

CCO

U i I.

zS

CLo

o

F- uu :

z U)')z Cc

0000 (cc0

00

0 (".2021 ,- 0

uj CC

S2S

000.

'U &r

w w

z w 0

z w 4cJ0 () 8 -, a

L > LU C0oc

LU iiLIL n
0LU CL0§ I

Cd'L

w (n

w1

z2 -

_ o ~0

kl. Ft
w 4

cc x

LU)
c-

cc 0 ý * 0

Soo 0

> ~00. .L
0)CfLa

~ ~cn~cC

W.,,

> 0uS".~ ~ ~ u"'I5I 4 2c
w S2 : o1

wLU @ 0J *)00!"C

.1S *Co

w1if U)

U.')

0@**

-j u

cc~

w Wg!'l
(0g 0 A

18 ~t,

0

U)6 z

LU.

ccw

LL. .5
cU)

D 0
0 P

LU CL

......

-*U-

> 0),w
a it

*0 4

Uj 19

-JLU

__ _ _ _ _ _ _ __ _ _ _ _ _3

U. 0

0a

LUL -C.

LUIL

cc

-J S22~ C1

Wi -
N

wuJ U

ci)

L(U

4UU

LU ~

L(U

200

This may not be the case. The literature indicates that perhaps only one

inference engine---CLIPS---has been formally validated.

The test-ng strategy of changing inputs, obtaining outputs, and asking

the expert if the results are reasonable may be appropriate for small,

expendable, non-autonomous, non-critical, in-house systems (where the cost of

an error and the cost of the system are extremely low), in environments where

the developer and the expert work closely together and the performance of the

system is continually monitored. But be prepared; this system is likely to

remain a prototype forever. When a knowledge-based system is to be used by a

large number of individuals, replace an existing method for solving a

particular problem, perform an important or critical f'rnction, or where the

cost of a system error ma-- be high, more rigorous and thorough testing is

necessary.

CONSTRAINTS TO TESTING

This section outlines some of the constraints a tester may enco~unter and

outlines the implications.

Hardware Constraints

* The system is operating neat machin~e limits.

* The system reeds to be ported to another machine.

Testing Implications:- The tester must be sure to have access to other

computers on which the system is designed to r-.n. If the machine is operating

near limits, the tester should determine if there are conditions that cause

the system to run at an unacceptable level.

Interoperability Constraints

* The system must access external databases or must access other
computer systems.

T.2sting Implications: The tester needs to ensure access to the other

databases or systems for testing. This may mean scheduling some downtime for

21

the users of these databases or systems.

Data Constraints

0 Access to materials about the domain;

0 Access to test cases;

0 All of the test cases used in development;

0 Expected input domain not defined.

Testing Implications: Most of the systems discussed in the interviews

had soib- type of data to test the system. If actual data do not exist or all

of the test cases were used in development, testers need to work with

developers and experts to develop a new set of test cases or to use data that

resulted from a simulation.

If actual data exist, it may be useful to analyze the data to get

information on the average case the system would be expected to handle, the

range of these cases, as well as types of cases the system would not handle.

It may be useful to meet with the developers to assess the input domain (the

distribution and critical values),

If no test cases are available, the best the tester could do is test the

other aspects of the system, such as the knowledge base.

Tool Constraints

• No access to static analysis tools;

• No access to statistical packages;

• No access to questionnaires.

Testing Implications: Typically, static analysis tools, statistical

packages, and questionnaires were not used or available. Without tools for

static analysis, extensive manual analysis of a large rule base is practically

impossible. The tester may try to divide a large rule base into logical

subseti of rules and test the subsets for logical consistency and logical

22

completeness. If the rule base is small (fewer than 50 rules), the tester may

manually examine the rule base for logical consistency and logical

completeness.

Documentation Constraints

* No objectives for testing (test plan);

* No document requirements;

- No standards against which to test;

. No explicitly defined performance measures.

Testing Implications: Documentation rarely exists and if it does, it

usually focuses on hardware requirements and issues about system integration.

Measures of performance are not usually explicitly defined, but probably

exist. The tester should meet with the developer to make the implicit

performance requirements explicit and document these requirements; otherwise

the tester will not be able to make any assessment regarding the system's

performance.

Personnel Constraints

a Access to experts;

* Access to intended users.

Testing Implications: Typically, when the expert is not available to

test the software, the project fails. If the expert is the intended user, or

a suitable replacement does not exist, the tester basically has two

choices-to either act as the expert or intended user himself, or to test only

those aspects of the system that do not include the judgment or opinion of the

user or expert. The tester may simply run test cases through the system and

check for cases that cause the system to behave irradicably or crash.

23

Resource Constraints

* Not enough time;

* Not enough money.

Testing Implications: Under resource constraints, the tester should

meet with developers and users to determine the priority of the different

aspects of the system. The tester should test the highest priority items and

explicitly determine the acceptable testing levels on each item.

Intended Use

* Distribution of system;

* Mission criticality;

* Cost of an error;

* Importance of the system to the organization.

Testing Implications: The testers should work with developers to assess

the impact of the system in terms of the cost of an error, its distribution,

and its criticality. If the system is performing a mission-critical function,

the cost of an error is high, and the system is to be widely distributed, all

aspects of the system must be thoroughly tested. If for any reason this is

not possible, the system should not be allowed to become operational.

LESSONS LEARNED/RECOMMENDATIONS FOR TESTING

• Comment the rules, indicate their sources.

* Partition large rules bases into meaningful rule subsets.

a Withhold a portion of test cases from the development effort;
reserve some test cases for use during system testing.

* Mix test case development with knowledge engineering; if it is
difficult to get an expert's time, use his or her time wisely when
one has it.

0 Determine the intended users of the system; they may be different
from the experts. Test the system with the expert as well as with
the intended user.

24

Testers must talk to the developers. Ask the developers which
areas of the software they feel are strong and which they feel are
weak. Concentrate testing on weak areas.

Explicitly define implicit performance requirements by meeting
with developers, experts, and users.

Generally, most of the recent work in the Army has beea with prototypes.

(The Army's approach to AI has been described as "out with a hammer in search

of a nail.") The establishment of Army AI Centers seem. to indicate an

organizational commitment to go beyond "studying the problem" into developing

operational systems. Developers need to allocate time and money for

documentation and testing; both aspects have taken a back seat to building the

system. Aside from the inherent difficulties with testing knowledge-based

systems, the lack of documented requirements, the unavailability of the

experts, the lack of tools for static analysis, and the lack of information in

testing methods and procedures have added to the difficulty.

25

APPENDIX A:

POINTS-OF-CONTACT

COMMERCIAL
Bob Shore Booz, Allen, and Hamilton

AGENCY: ACE
John Benton Engineering Topographic Lab (202) 355-2717 *
Dr. Victor LaGarde Chief of Engineers (601) 634-2683 *

AGENCY: AMC
Richard Camden HEL, Aberdeen Proving Ground
Mort Hirschburg BRL, Aberdeen Proving Ground
Paul Janusz U.S. Army AMCCOM (201) 724-4849
Mike Gedeon TACOM (213) 574-6150
Phil Emmereman Harry Diamond Labs (301) 394-3000
Larry McKowsky US Army Belvoir RDE Center (703) 664-2037
Bruce Thompson Aviation Applied Technology (804) 878-5620

Directorate
Lucille Newman Headquarters AMC (703) 274-8952
Dr. Willard Holmes Missile Command (205) 876-1048 *
Edward Beach Communications-Electronic (201) 544-2176 *
Admiral Piper Training Aids and Devices (407) 380-4287 *
Wayne Ammodt AMCCOM (Chemical Group) AV 743-5931 *
Jeff Murter APG Combat System Test (310) 278-7727 *

Activity
Doug Chubb CECOM (Vint Hill) *
Rusty Warren Natick Labs (313) 574-6150 *
Gerry Coonan Aviation Systems Command (314) 263-1955 *
Robert Bell Test and Evaluation Command (301) 278-7882 *

Headquarters
Susan O'Donnel Central Systems Design Agency (314) 263-5045 *
Som Karemchetty Laboratory Command - HQ (202) 394-3000 *
David Hislop Army Research Office (919) *

AGENCY: ARI
Dr. Joseph Psotka U.S. Army Research Institute (202) 274-5540

for Behavioral Sciences

AGENCY: CAA
LTC Michael Ryan Concepts Analysis Agency (301) 295-5229

AGENCY: DA
CPT Shawn Butler HQDA: AI Center (202) 694-6900
Dr. Raymond Freeman Deputy Chief of Staff (202) 556-2942 *

for Operations & Plans
MAJ Chip McConville Deputy Chief of Staff for (703) 671-8680 *

Intelligence

26

AGENCY: DARPA
LTC Peter Sowa Defense Advanced Research (202) 695-5918 *

Projects

AGENCY: DLA
Lt. Col Bart Hodgson DLA (703) 274-7227
Larry Johnson Headquarters, DLA
Rex McHail DLA-OSS
Fred Murphy DFSC-LO (202) 274-7448
John Bryant Defense General Supply Center (804) 275

AGENCY: FORSCOM
Bob Edmonds Forces Command (404) 752-4114

AGENCY: ISC
MAJ George Thurmond Army Institute for Research (404) 894-3110 *

in Management Information
and Computer Science

AGENCY: TRADOC
LTC John James Headquarters TRADOC (804) 727-3945
Ollie Hedgepeth Logistics Center, Ft. Lee (804) 734-1621
Major Randy Ball Intelligence Center School (602) 538-2253 *
CPT Patrick Vye Combined Arms Center (913) 684-5607 *
CPT Gary Krzisnik Armor Center/School (502) 624-6347 *
CPT Keith Roberson Signal Center/School (404) 791-6520 *
CPT Don Wilkins Field Artillery Center/School (405) 351-6400 *

AGENCY: TSG
Glen Higbee USAMARIID 663-7514

AGENCY: USMA
Rob Rayenga West Point Military Academy (914) 938-3427
MAJ Robert Richbourg Deputy Chief of Staff for (914) 938-2407

Personnel

*Limited information

27

APPENDIX B:

SELECTED INTERVIEWS

Interviewee: Richard Camden and Carolyn Dunmyer
HEL, Aberdeen Proving Ground
February 1989

Description: The expert systems were clerical in nature. The systems
are generally problem-oriented, i.e., they solved a problem previously
performed by a person using judgment and experience. The developers had
access to an expert system shell (Knowledge Craft) and used LISP for
applications development. The developer viewed LISP as a rapid
prototyping language and thought the software would have to be converted
to another language (e.g., C) before it was fielded. The systems did
not use uncertainty or deep knowledge. They did not yet have experience
in testing expert systems. The developer did not see a difference
between testing a knowledge-based system and testing conventional
software. Testing a knowledge base seemed no different from testing a
database.

Requirements: Typically they work from a requirements and design
document. The requirements and design documents are located on the same
computer on which the software is being developed in order to facilitate
updates. One difference that they saw between conventional software and
Al software was the frequency with which requirements changed.

Testing: Generally, their approach to testing was to test the software
to see if it did what it was intended to do. The approach to testing a
knowledge-based system was similar to the approach used to test a
decision support system: (I) test the algorithms; (2) determine whether
or not the system is inferencing correctly; and (3) validate the
inference pathways (the process as well as the answers). They viewed
the availability of an expert as essential for properly testing an
expert system. They did not see a need for separately testing aspects
of the shell.

Testing Tools: They have not used any testing tools. They mentioned a
testing tool called CGI that is being developed for Ford. CGI is a tool
used to validate knowledge bases, but they did not have access to this
tool or any others for testing a knowledge base.

Interviewee: Richard Kaste (Researcher/Systems Developer)
BRL, Aberdeen Proving Ground
February 1989

Description: The expert system was designed for use by combat
developers at Ft. Sill. The system is viewed as an aid for decision
making rather than as an actual decision maker. The system did not use
uncertainty or deep knowledge. The system was in its early stages of
development. One critical aspect of the system was its need to

28

interface with many other systems. LISP was used as the development
language. No expert system shells were used. The knowledge base
consisted primarily of rules that were based on doctrine.

Requirements: The requirements for the system evolved from an existing
program. A requirements document did not exist. The requirements for
the system were determined from meetings with the Combat Development
personnel from Ft. Sill.

Testing: Testing the system consisted of testing the knowledge base by
examining the rule base. The rule base was small, consisting of fewer
than 100 rules. The rules were tested for consistency and redundancy;
they looked for rules which could be collapsed. The current test
strategy was basically to change inputs, get outputs, and check if
outputs are reasonable (as determined by a Sgt 1st Class based on his
experience as an artillery man and his knowledge of doctrine). Testing
did not focus on what causes the system to crash since it was being
developed for expert users (NCOs). The user interface was tested by
getting feedback on the displays from the intended users. The system
was stress-tested to see the number of targets that it could handle and
the speed at which it could handle them. For this system, speed was an
important attribute.

Additionally, several subjective measures were obtained. The
developer/tester looked to see if the operator was happy with the
results produced by the system, if the system fit in the intended
operational environment, the timeliness of the results, and the quality
of the explanation facility.

Test cases were derived automatically from a scenario driver developed
by a contractor. The scenario driver provided realistic test cases but
did not provide cases that would go through all the possible ranges of
values for the variables.

One of the problems associated with testing the expert system was that
it was difficult to separately test the inference engine and the
knowledge base. It was difficult to determine when to stop testing.
Quickly changing code and rapidly changing requirements added to the
difficulty in testing the expert system. Since no single expert in this
area existed and no "one" correct answer existed, it was difficult to
measure how well the system was doing. Additionally, it was difficult
to get agreement from the experts.

Interviewee: Mort Hirschburg, ALBM
BRL Aberdeen Proving Ground
February 1989

Description: A small (5%) of combat knowledge is in ALBM (AirLand
Battle Management), one offensive posture and one defensive posture.
The system is very large-on the outer limits as far as size of expert
systems. The system contains over 400 procedures, each containing large
rule bases. Initially the developers used a commercial shell but,
because of run-time performance requirements, it could not be used.

29

ALBM contains a custom-built series of support tools (graphical,
representational, database, mini-operating system, and expert system).
These support tools have the potential to become commercial products.

The development language is LISP. When the system is a "final product,"
it will probably need to be converted to C, then to Ada, which could be
a very big problem. The system is considered a "non-toy fragile AI
system."

Requirements: The system has a formal requirements document that has
been subjected to a formal design review. Feedback was obtained on the
initial system design.

Testing: A formal and comprehensive test plan was developed for ALBM.
The approach to testing for this system is multi-faceted; it includes
static testing, dynamic testing, multiattribute analysis, acceptance by
experts, and questionnaires. The multi-faceted approach consists of
obtaining feedback from outside experts as well as developer experts.
Additionally, a customized application of EVA is being developed for
static analysis of the knowledge base.

Currently, changes to the knowledge base in the field are not addressed.
The goal is to have a computer-literate person to change ALBM--not a
novice user. The idea is that staff officers can tailor parts of the
system to the commander's preferences. He was unsure on how to
comprehensively test a system with this kind of Zlexibility. It is
likely that pieces of the system-rather than the entire system--will be
fielded, since the pieces may be more stable.

Additionally, he indicated that there were special problems regarding
testing classified systems, such as the availability of good test data
and providing the necessary safeguards for those who need to access the
system to test it.

Interviewee: Glen Higbee and Tim Cannon
USAMARIID, Ft. Detrick, MD
February 1989

Description: The department at USAMARIID provides computer support for
research-medical research (vaccines, drugs, early detection of disease,
treatments, defensive biological warfare) and basic research in
chemistry, biology, and micro-biology.

The development environment is informal. The software is typically
developed with an expert system shell (KEE, Level 5, lst Class, XPER) or
in LISP. The applications are primarily designed for use on a PC. All
systems are used in-house, characterized by trained users, and the users
have easy access to developers. Because of this work environment, the
software developers are able to get feedback from the "expert" users as
to how the system performs in actual settings and make modifications on
request. Some examples of the expert system applications are for use in
drug and vaccine development and for systems that are used as a
recruitment training aid for selection of volunteers for human vaccine

30

testing, immunization scheduling, and small animal breeding. Other
expert system applications have been developed for disease prediction
and mosquito classification.

Requirements: Typically there are no documented requirements. The
software requirements are determined from meetings with the researcher
and feedback on the prototype as it is developed. The development
schedule for software is mission-related (software in support of highest
priority mission is given highest priority for development).

Testing: No formal test plans are developed. Typically a single expert
is used to test the system. The developers believed that the expert
system could not be developed or tested without a commitment from
management to make that expert available. Generally the software is not
tested with or used by novices. The error-handling routines that flag
data outside acceptable bounds are tested. A limited amount of testing
is performed on the interface by the developer. Users exercise the
interface when software is in actual use; because of the close working
relationship between the end user and developer, the developer is able
to obtain feedback and make the appropriate adjustments.

Test cases did not present a problem; actual data are readily available
for use in testing. Initially a subset of actual data is used for
testing, then the software is tested against the entire database.
Generally, the testing strategy here is to test the system as it is
developed, testing it first with a large subset of an actual database
and then testing it with the entire database. The system is tested with
the expert throughout development and is monitored as it is used.

One of the biggest problems they saw in developing and testing Al
systems is the lack of a standard development methodology and an
unclearly defined flow of control.

Interviewee: Paul Janusz
Picatinny Arsenal
February 1989

Description: One expert system project was initiated in 1983/84; it was
a Phase 1 SBIR to apply AI to SQA (an expert system to do documentation
reviews, test plans, and statements of work). The purpose of Phase 1
was to examine the feasibility of such an expert system. The developers
(a contractor) used an expert system shell called Invisage (by Systems
Designers International). They experienced many problems with using the
shell: the shell contained bugs, the capabilities and limitations of
the shell were not fully understood, there were no training courses on
using the shell, and there was a lack of customer support from the maker
of the shell. Additionally, the shell was designed for a VMS operating
system and everyone in the organization used a UNIX operating system.

Requirements: No documented requirements existed for the system. The
entire development effort lacked focus on a specific domain area; the
problem was not well-defined.

31

Testing: A limited amount of testing was performed. The system was
never used because it did not run under a UNIX operating environment.
No static tests were performed on the knowledge base. Initially one
expert was available for testing but, because of a high turnover rate,
was unavailable for testing the system.

Other: Some of the lessons learned from their initial efforts were to
get a better idea of the system requirements up-front and to obtain a
commitment from management to make the expert available for developing
and testing the system.

There are now plans to implement a Phase 2 version of the software. The
new effort will be programmed in C and will use the NEXPERT expert
system shell. With the new effort, the development team plans to
integrate testing with all phases of development. It will require a
test procedure up-front and implement a series of acceptance tests along
the development path.

Interviewee: Larry McKowsky
Fort Belvoir, RD&E Center
March 1989

Description: The Center develops knowledge-based systems for in-house
use. The expert system described was a statement of work generator.
Before development, they looked at shells that could be purchased for
under 5K, and selected XSYS. It was the first time the developers used
the shell and many problems were associated with it. To this group,
copyright/licensing presented a big problem. The restrictions made it
difficult and costly to share the software and limited the potential end
users.

Generally, people were disappointed with the results of the development
effort and the software was described as "more fizz than sizzle." They
were hoping the system could function as a tutorial for new emnloyees in
the organization, but instead, the software ended up as an automated
"checklist." The system was described as capable of providing the user
"one year of experience twenty times."
Most of the rules in the knowledge base came from regulations; when the

regulations became outdated, the system became virtually useless.

Requirements: A requirements document for this system did not exist.

Testing: No testing was specifically aimed at the knowledge base and no
automated static analysis tools were used. Generally, testing consisted
of the expert using the software and determining if the results were
reasonable. A problem faced in testing this software was testing the
shell. It seemed the shell contained many bugs which made it difficult
to pinpoint the reason for an error occurring. Another difficulty cited
was the lack of a standard to measure the success of the system.

32

Other: The lessons learned from their initial experience in expert
system development were specifically aimed at issues concerning the
expert system shell. They advised allocating time to learn the language
of the shell and to gather information on the shell (its limitations and
capabilities, additional costs associated with site licenses, and vendor
support).

Interviewee: Larry McKowsky and Lydia Carrasquillo
Fort Belvoir, RD&E Center
March 1989

Description: The system used the TI Personal Consultant. The system's
knowledge base was developed based on interviews with experts who were
not always willing to participate. A prototype was developed by a
contractor and was tested in-house for a two-week period.

Testing: The approach to testing involved examining three aspects of
the system-technical, operation, and performance. Initially, the
system's output was reviewed by an expert. The expert felt that,
although the logical sequence of questions presented seemed correct, the
output was incorrect. Additionally, the system was too slow. After
these general findings, the knowledge base was examined in detail.
First, the automated rule checker that came with the shell was used to
examine the knowledge base, but did not thoroughly exercise the
knowledge base.

The testers tried to test and verify every rule, which meant manually
examining every rule. As a result, missing rules, rules that were not
fired, and rules that could be combined were identified. The testers
were able to collapse the rule base--consisting of 500 rules-to 150
rules. Additionally, the testers checked the logic used by the system
by going back to the experts and asking them to verify some of the work
performed by knowledge engineers. The logic was verified by interviews
with multiple experts. The testers expressed difficulty in reaching
agreement with the multiple experts.

Other: One of the greatest difficulties they faced was gathering
knowledge for the knowledge base. The number of changes makes the
expert system extremely difficult to upkeep. The developers/testers
believed it was important to consider maintenance issues up-front and
determine a means to keep a knowledge base current with Army regula-
tions. They were also unsure of the ability of an expert system to
teach a nonexpert to become an expert in a specific domain area.

Some of the lessons learned follow:

Experts may not exist or may be difficult to find.

Define clearly and early what you want the system to do.

Think about maintenance early in the development process.

Testing should be ongoing throughout the development process.

33

* Do things small, make sure you have access to relevant knowledge.

0 Pick a subject area that you know soiething about.

• Keep the scope small.

a Pick something that people in the organization really care about.

Interviewee: Lt. Col Bart Hodgson
Defense Logistics vaoncy
March 1989

Description: Two prototypes resulted from two years of exploratory
involvement with expert systems. The Buyer's Assistant puts together
clauses for contracts in purchasing fuels. The Buyer's Assistant was
developed with CLIPS for use on a Gould 950. The Inventory Manager's
Assistant (IMA) monitors inventory demand and procurement, specifies re-
order points, and reviews information. The system flags information
that needs to be updated. The Inventory Manager's Assistant was
developed using che M.1 expert system shell and was initially intended
to be used on a PC, but migrated to a mini-computer. Both systems had a
critical need to access large central databases. The development of
these systems was an iterative process of building a prototype, showing
it to an expert, and obtaining feedback.

Requiremenrs: A requirements document did not exist for the pro..totypes.
The prototypes were used for generating statements of work foZ the
operational system.

Testing: The testing strategy is to develop a comprehensive set of test
cases. The test cases are analyzed by a panel of experts to determine
the expected outcome. The computer system is used to determine the
output for the same set of cases. The experts and the expert system
should reach the same conclusion 85% of the time.

Other: Last year DLA had put together a three-person working group to
develop a management strategy on how to do AI and implemented an AI
coordinating group and a training program.

Some of the lessons learned follow:

0 For the expert system development process to be successful,
management must commit to making the expert's time available.

* De:elop in-house capabilities. Implement training programs in
knowledge engineering as well as in the expert system shell.

0 Instill order. Identify a set of AI products to use in the agency
and provide training.

0 Require software developers to develop software that is consistent
across machines and to use similar interfaces across machines.

34

Design software with the capability to move up to a bigger
machine.

System Integration is very important. Machines and access to very
large databases may drive requirements.

For DLA, expert systems must, regardless of size, be able to access
data. Additionally, the expert systems should be incorporated into
"modules" that can be accessed from programs written in other languages.

The biggest stumbling block faced by this organization was trying to get
an organizational commitment to go beyond just "studying the problem."

Interviewee: Shaun Butler
HQDA Al Center, Pentagon
May 1989

Descriptlon: Currently work in AI is of two types-knowledge-based
systems and object-oriented programming. The iterative development
process is characterized by rapid prototyping. One expert system, soon
to be fieldcd, captured the expertise of a single psychiatrist. The
system determines a benefit rating for people unfit for service L-ie to a
mental disability. Basically the system is a classification system
designed for use by nonexperts.

Requirements: A requirements document did not exist foc initial
efforts. There are plans to convert the system from KEE on a Symbolics
to ART for a PC, and there are plans to document the requirements for
the conversion.

Testing: The approach to testing involved a single expert as well as
rests with the end users. A tool for static analysis was not available
and most _f the examination of the rule base was performed manually.
When testing the knowledge base, they tried to find redundant rules and
assess the effects of different rule combinations and adding rules to
the knowledge base.

A comprehensive set of 200 test cases was developed. The cases covered
the different types of disorders as well as variability within a
particular type of disorder. The test cases attempted to approximate
the population and were obtained from actual data.

The expert used the machine to solve the 200 test cases. The expert
used the patient's mental health summary data as input. All of the
expert's input and keystrokes were saved and analyzed at a later time.
(They also built tools that used the saved input data to rerun the
system after changes were made to the rule base.) This testing stopped
when the system and the expert agreed on the answer 80% of the time.

The system was also tested with the end users. The system was intended
for non-psychiatrists that serve on a board to determine the benefit
compensation rate. Boards generally consist of a doctor (of some type),
a line officer, and an administrative person. The system was designed

35

to take away some of the bias and discrepancies among different boards.
The system was tested by board members. One board representative input
values and these values were saved and compared to the expert's
interpretation of the same patient's data.

Other: The developers found it difficult to obtain a documented
comprehensive testing strategy in the literature. There was a need for
a method to test reasonable combinations of rules since it was not
always possible to go through every rule in the rule base.
Additionally, they found it difficult to determine a measure of
performance and ways to determine when the expert was wrong.

Because of resource constraints, the same 200 test cases were used in
both developing and testing the system.

Interviewee: John Bryant/Jim Anderson
Defense General Supply Center
May 1989

Description: One system developed by the Defense General Supply Center
was a hazardous material classification system. The system was designed
for use by clerks at depots who receive hazardous materials and who must
consistently and accurately assign one of fifty-five hazardous material
codes to a shipment so that a storage location can be assigned. The
system was designed to minimize the number of user input errors.
Generally, the system prompted users to select an item from a menu
rather than enter a response using the keyboard. The prototype was
developed for use on a PC, used 94K, and contained 400 rules. The
prototype assigned 5 corrosive codes, 3 flammable codes, Lnd 2 corrosive
and flammable codes. The prototype was developed with the M.1 expert
system shell. The knowledge base incorporated rules from regulations
(Department of Transportation, United Nations, and Maritime).

Requirements: The software was developed in-house as a prototype to
assess the feasibility of a full system; no requirements were docu-
mented.

Testing: A group of experts-chemical engineers---ere used to test the
system. The chemical engineers were given the latest version of the
prototype and maintained a very detailed spreadsheet of things that went
wrong. The chemical engineers also made sure the system was consistent.
The system was not tested with the end user.

Other: It was very difficult to get the chemical engineers to agree
with each other as to the correct code.

One particular problem in testing knowledge-based systems was in finding
rules that arrive at the right conclusion for the wrong reason. Other
questions were raised as to what constitutes an expert. Knowledge bases
incorporate rules from various sources, such as regulations and
directives as well as subject-area experts.

36

The current approach to AI in the Army was described as "out with a
hammer in search of a nail when what you really need is a screw." Or-
ganizationally, there have been a lot of people jumping on the Al
bandwagon and many people have expected more than AI could deliver. The
interviewees saw a need for more education as to what is Al, what are
appropriate applications, and a prActical way for them to be
implemented.

Some of the lessons learned which they described include:

* It is easy to underestimate the amount of resources it will take
to complete the job.

* Anticipate false starts.

Make sure the problem is relatively small and well-defined.

* Assess the availability of actual data early.

Interviewee: Dr. Joseph Psotka
Army Research Institute
July 1989

Description: The system is an intelligent training system designed for
classroom use at the air defense school. The system is very large and
designed to run on a Symbolics. The software was developed using KREME,
an object-oriented shell. The system was designed to improve the
quality of training, as well as reduce training costs. Previously,
students trained with an actual radar system that cost approximately 3
million dollars. The intelligent training system simulates the HAWK air
defense radar to reduce the cost of training.

Multiple experts were used in development. Three types of experts were
used (engineers, trouble-shooters, and experts with HAWK radar) and four
different levels of expertise were incorporated. The user interface and
explanation facility were viewed as the most critical aspects of this
system.

Requirements: No formal requirements documented existed for this large
system, but the design specifications were documented. The air defense
school did require it to fit into the school's curriculum.

Testing: As it was designed, Raytheon (the contractor) and the air
defense school used the system directly or looked at the design
specifications to assess the completeness and quality of radar
simulation. The interface was iteratively evaluated by the end users
(students and trainers). The interface evaluation included an
assessment of the screen design, feedback message placement, scrolling,
features, menu naming, design, and actions. The system was evaluated in
a classroom setting by observing the system in use and through
questionnaires. The questionnaires addressed features used, perceived
usefulness, perceived problems, and general feelings regarding the
system. Observers videotaped and took notes to assess the usefulness of

37

the system in a classroom setting. Additionally, an experiment using
subjects in an actual classroom setting was designed to measure the
impact of the system on student performance.

Other: The system is now operational and part of the instruction
program at Ft. Bliss.

Interviewee: LTC John James
Director, TRADOC AI Center
July 1989

Description: The TRADOC Al Center has developed one very large system
and several small systems. The small systems include a cost estimator
and a media selection expert system. The cost estimator was developed
in one month by a West Point cadet on a work-study program. The program
develops cost estimation relationships for allocating TRADOC dollar
resources. The software was developed for use on a Macintosh PC and was
written in Hypercard. The system is used by the resource management
office and performs work in 5 minutes that previously took about 2
weeks. The other small system, an expert system for training media
selection, is a PC-based system written in CLIPS. The system was
designed to help select an appropriate training medium based on the
level of expertise a student is expected to obtain (familiar,
conversant, or mastery). The system will be distributed to all TRADOC
schools.

The large system-the Inventory Asset Analyzer-is an object-oriented
program developed in LISP to run on a Symbolics. The Inventory Asset
Analyzer develops a modernization plan for the Army's fleet of rotary
wing aircraft from a given set of assumptions, distributes resources to
the highest priority units, and redistributes the usable displaced
resources to lower priority units. The system also provides extensive
"what if" analysis. The software has introduced a substantial time and
cost savings and is being enhanced to deal with new modernization issues
to show the logistical, maintenance, and life-cycle costs of future
aircraft modernization plans.

Requirements: The systems were developed by rapid prototyping and no
system requirements were documented.

Testing: There were no formal test plans for these systems. Testing
consisted of iterativel.y running the system with the expert and
potential user.

Other: Some of the lessons learned include:

It is important to select the right problem and to match the AI
technology with the problem.

Rapid prototyping has worked very well for the TRADOC AI Center;
it has cut down on long development cycles for software.

38

Mix small and large projects, get the staff involved in small- and
medium-sized projects, and develop training programs.

To successfully develop Al systems, both the expert and user need
to be involved.

For developing successful applications of expert systems, TRADOC
recommends selecting the right problem, using qualified people,
trying not to oversell the technology, committing the necessary
resources, clearly focusing the problem, and using shells,
particularly for smaller applications.

Interviewee: Ollie Hedgepeth
Logistics Center, Ft. Lee
July 1989

Description: The AI branch at the Logistics Center at Ft. Lee generally
limits the development of Al systems to one large application and
several smaller applications. The small systems are generally designed
with a specific expert user in mind. Generally, the systems seem to be
smart front or back ends to existing systems. One of the small systems
is the Study Plan Advisor. The Study Plan Advisor helps to produce a
study plan in accordance with Army Regulations (AR 5-5, Management of
Army Studies and Analysis). The large system-Planning Assistant for
Logistics Systems (PALOS).-was developed on a LISP machine and was
designed for developers of Standard Army Management Information Systems
(STAMIS). The system shows the relationship of Army units and their
STAMIS requirements. PALOS also allows for extensive "what if"
analysis. PALOS has reduced the amount of time for the analysis from a
6-month manual process to a 2-hour automated process.

Requirements: Generally, system requirements have not been documented.

Testing: Generally, testing involves developing a set of test cases,
using the system to solve the test cases, and comparing the system
results to the results obtained when the problem was solved by an
expert. Additionally, they will ask a nonexpert (such as a new person)
to solve the problem with the system and compare the nonexpert's results
to the expert's results.

Additionally, some testing was performed on the knowledge base, but it
was done manually since they did not have any automated tools for static
analysis.

Other: Some of the lessons learned include:

Ask early how the system will be maintained.

• Get the users involved early in the development process.

39

It is important for the AI technology to be accepted by an
organization. Acceptance is necessary to obtain resource commit-
ments from management. Small successes (with fast turnaround
times) often pave the way for larger systems.

For the Army AI Center to work effectively, a mix of military and
civilians is needed, since solders will be reassigned. The
exception to this seems to be when there is a large group (6) of
military, such as at the AI Center at the Pentagon or at TRADOC.

To make the system acceptable to the domain expert, quantify the
improved performance in the number of hours saved by using the
computer system.

Interviewee: Brian Thompson
AVSCOM, Aviation Applied Technology Division
July 1989

Description: The expert systems developed were diagnostic systems for
helicopter repair. The diagnostic systems were designed to be used in
the field and run on portable computers. The systems involved extensive
rule bases with data gathered from expert troubleshooters.

Requirements: Documented requirements did exist for these systems.

Testing: The prototypes were tested using actual cases from the past.
Initially, the systems were tested in a similar operational environment
for 3 months. At this time, the overall system effectiveness and the
user interface were evaluated and changes were made to the system. The
system was then run parallel to the existing process in the intended
operational environment for approximately one year. During the parallel
test, assessments were made as to how well the system met the goals
stated in the requirements document.

Other: The experiences with the helicopter diagnostic system high-
lighted the importance of adequate field testing. The field testing
uncovered many unexpected errors.

Other lessons learned from their experiences are as follows.

It is important to comment the rules. Rules which were written to
increase speed were very difficult to understand, while rules
which were easy to understand took longer to process.

It is useful to partition the rules into "rule sets;" it increases
program speed and allows for more manageable debugging.

It is essential to have a strong commitment from management for
the project to be successful.

40

APPENDIX C:

SURVEY OF ARTIFICIAL INTELLIGENCE IN THE ARMY

SURVEY CONDUCTED

1. General Information:

Name:

Address:

Phone:

Office Background (Please answer for your office):

Number of people or level of effort in AP: Civilian
Military

Amount of contractor effort in Al (persons or dollars):

Number of years the office has been working in AL.

2. Development Environment:

Level of effort involved in the systems your office creates. (For each category of effort, enter one,
some or many.)

EFFORT (MAN-*MTNS)
<1 1-6 7-24 25-60)

HOW MANY:
(one/some/many)

How many of your office's Al systems are on the following hardware platforms (enter one, some,

or many)?

Micro-computer:

Workstation:

Mini/Mainframe:

41

How many of your office's Al systems utilize an Al shell or environment such as KEE, CLIPS, M.
1, Exsys, or 1st Class (one/some/many)?

Which shells or environments?

How many of your office's Al systems utilize an Al language such as LISP or Prolog
(one/some/many)?

Which languages?

Will the final version of the Al systems be in a shell, an Al language, or a conventional
language (e.g., Ada, Basic, C)?

What types of Al systems has your office created (one/some/many for each type)?

Expert system or knowledge-based system:

Image recognition:

Intelligent tutoring:

Machine learning:

Natural language:

Neural network:

Other (please specify):

3. How many of your office's Al systems would you classify as (note that categories are not mutually
exclusive):

MISSION-CRITICAL SYSTEMS TO SYSTEMS TO SYSTEMS THAT

CLASSIFICATION: SYSTEMS ASSIST AN EXPERT ASSIST A NOVICE OPERATE AUTON OUSLY

HOW MAKY*

(ole/sowe/msny)

How many will be used by the organization that developed them (one/some/many)?

How many will be distributed widely (one/some/many)?

4. We have noticed eight common methods for testing. How many of your expert systems have
been tested using something similar to each of these approaches (see last page for defini-
tions)? (Note: one system may be tested by multiple approaches.)

42

NO PROTOTYPE AGREE- COMPLI- SATIS- CASE- ORGANIZA- FIELD MULTI- OTHER
APPROACH: TESTING FOREVER MENT AN FACTL DEPENDENT TIONAL TESTING FACETED (Ptease expLAin)

HOW MANY:
(one/some/many)

5. Factors that Affect Testing:

To what extent have the following factors affected the quantity and quality of testing performed on
your office's Al systems?

LITTLE A LOT

INFORMATION AVAILABLE ON TESTING 1 2 3 4 5
TIME 1 2 3 4 5

RESOURCES 1 2 3 4 5
DEVELOPMENT ENVIRONMENT 1 2 3 4 5

6. In your office's testing, how often are the following aspects of an expert system or knowledge-
based system tested (one/some/many)? How important is each aspect (low/medium/high)?

Structure and content of the knowledge base (consistency, completeness, and

accuracy):

Inference engine:

*Service requirements" (compatibility with host computer system, computer usage,
system integration, portability):

Performance (quality of results, speed):

Usability (ease of use, extent of use, adequacy of interface, organizational impact):

Other (please explain):

7. Software Quality:

For any Al system, how important is each of the following traditional software quality factors
(low/medium/high)?

Efficiency (How well does it utilize resources?):

Integrity (How secure is it?):

Reliability (What confidence can be place in what it does?):

Usability (How easy is it to use?):

43

Correctness (How well does it conform to the requirements?):

Maintainability (How easy is it to repair?):

Testability (How easy is it to verify its performance?):

Flexibility (How easy is it to change?):

Interoperability (How easy is it to interface with another system?):

Portability (How easy is it to transport?):

Reusability (How easy is it to convert for use in another application?):

8. Future Work:

How important is future work in these areas (low/medium/high)?

Develop methods for testing the validity of "confidence" or "uncertainty" factors,
which are used in some expert systems:

Develop methods and aids for determining the accuracy and built-in bias of an
expert system:

Develop automated static testing tools for analyzing the consistency and
completeness of knowledge bases:

Develop an automated means for assessing user acceptance:

Develop a tool to generate requirements against which an Al system can be
tested:

Develop a computer program to help perform multi-faceted testing:

Try out Al testing methods in a 'testbed:"

- Would your office like to serve as a testbed (yes/no/maybe)?

Periodically update and publish a compendium of lessons learned from efforts to
test Army Al systems:

Collect and publish an anthology of articles on testing Al:

9. Any Other Testing Considerations:

44

10. Comments on Questionnaire:

Did this questionnaire raise new testing issues (yes/no)?

Would you like to receive a copy of the results?

Do you feel a questionnaire of this nature should be periodic (e.g., make this The Annual
Army Al Census)?

TABULATION OF SURVEY RESULTS

Level of effort Involved in the systems crested:

EFFORT (HAN-MONTHS)
0 1-6 7-24 25-60 >60

ONE 1 0 2 0 0
SOME 1 2 3 2 0
MANY 1 5 2 1 1

How many AI systems are on the following hardware platforms?

MICRO-CO4PUTER WORKSTATION MINI-MAINFRANE

ONE 1 1 0
SOME 5 5 2
MANY 4 2 0

How many Al systems use a shell or an Al language?

9 OF Al
SHELL LANGUAGES

ONE 0 2

SOME 3 1
MANY 4 6

45

What types of AI systems have been created?

EXPERT IMAGE INTELLIGENT MACHINE NATURAL NEURAL
SYSTEM RECOGNITION TUTORING LEARNING LANGUAGE NETWORK

ONE 1 1 0 2 0 2
SOME 2 0 1 1 0 1
MANY 7 0 0 0 1 0

How many Al systems developed would be classified as:

MISSION-CRITICAL SYSTEMS TO SYSTEMS TO SYSTEMS THAT
SYSTEMS ASSIST AN EXPERT ASSIST A NOVICE OPERATE AUTONOMOUSLY

ONE 0 1 1 0
SOME 1 3 4 2
MANY 3 4 2 0

How will the Al system be distributed?

USED BY DEVELOPING WIDELY
ORGANIZATION DISTRIBUTED

ONE 2 3
SOME 4 7
MANY 1 2

How many expert systems have been tested using something similar to these approaches?

NO PROTOTYPE AGREE- COMPLI- SATIS- CASE- ORGANIZA- FIELD MULTYI-
TESTING FOREVER MENT ANCE FACTION DEPENDENT TIONAL TESTING FACETED

ONE 0 1 1 0 0 0 0 1 0
S0M4E 1 1 1 2 3 0 0 2 1
MANY 0 3 2 1 1 1 1 2 1

46

To what extent have the following factors affected
the quantity and quality of testing performed?

LITTLE A LOT
1 2 3 4 5

INFORMATION AVAILABLE ON TESTING 1 3 4 0 1
TINE 0 1 2 1 5
RESOURCES 0 1 3 2 3
DEVELOPMENT ENVIRONMENT 2 2 2 3 0

How often are the following aspects on an expert system or knowledge-based system tested?.

KNOWLEDGE INFERENCE SERVICE
BASE ENGINE REQUIREMENTS PERFORMANCE USABILITY

ONE 0 0 1 0 0
SOME 4 2 2 2 3
MANY 4 3 2 7 5

How important are the following aspects of expert system testing?

KNOWLEDGE INFERENCE SERVICE
BASE ENGINE REQUIREMENTS PERFORMANCE USABILITY

LOW 0 0 0 0 0
MEDIUM 2 3 1 2 0
HIGH 4 0 2 4 1

How Important Is each of the following software quality factors?

NIGH MEDIUM LOW

EFFICIENCY 3 5 2
INTEGRITY 3 2 5
RELIABILITY 8 2 0
USABILITY 10 0 0
CORRECTNESS 7 3 0
MAINTAINABILITY 2 7 1
TESTABILITY 5 3 2
FLEXIBILITY 5 4 0
INTEROPERABILITY 4 2 4
PORTABILITY 3 5 2
REUSABILITY 2 3 5

47

How important is future work in the following areas?

NIGH MEDI UN LOW

METHODS FOR TESTING THE VALIDITY OF CONFIDENCE OR 1 4 4
UNCERTAINTY FACTORS

METHODS AND AIDS FOR DETERMINING THE ACCURACY AND 3 3 2
BUILT-IN BIAS OF AN EXPERT SYSTEM

AUTOMATED STATIC TESTING TOOLS FOR ANALYZING Th, 6 2 0
CONSISTENCY AND COMPLETENESS OF KNOWLEDGE BASES

AUTOMATED MEANS FOR ASSESSING USER ACCEPTANCE 2 2

TOOL TO GENERATE REQUIREMENTS AGAINST WHICH AN 1 3 5
At SYSTEM CAN BE TESTED

COMPUTER PROGRAM TO HELP PERFORM MULTI-FACETED 0 4 4
TESTING

TRY OUT Al TESTING METHODS IN TESTBED 3 1 1

PERIODICALLY UPDATE AND PUBLISH COMPENDIUM OF 4 2 3
LESSONS LEARNED FROM EFFORTS TO TEST ARMY Al SYSTEMS

COLLECT AND PUBLISH ANTHOLOGY OF ARTICLES ON TESTING Al 5 1 4

48

APPENDIX D:

LESSONS LEARNED

Richard Kaste of the Ballistic Research Laboratory, Aberdeen Proving

Ground, provided a list of lessons learned primarily regarding knowled%,

engineering and development. (The list below was received EMAIL and quo ed

from the EMAIL response.)

The process of building an expert system is inherently experimen-
tal.

* Knowledge engineering is an art.

* Expect much rewriting (e.g., of conflicting information).

* The task will take him much time.

* Expect the unexpected.

* Read documents on the subject, especially those written by the
expert.

* Learn the domain to ease the conversation.

* Become familiar with the problem before beginning extensive
interaction with the expert.

• Use the terms and methods that experts use.

* Define the task very clearly.

* May be problems with unspoken priorities; may not have one best
solution.

Clearly identify and characterize the important aspects of the
problem and subproblems.

Define what a solution looks like, what concepts and processes are
used in it, and the essential aspects of human expertise.

0 Define the nature and extent of "relevant knowledge" that under-
lies the human solutions.

• Define situations that are likely to impede solutions.

0 Beware the overzealous expert who expands the problem at the
expense of a solution to the one at hand.

0 Work intensively with a core set of representative problems.

49

* Aim for simplicity in the inference engine.

* Don't worry about time and space efficiency in the beginning.

* The expert may provide initial objects, bounds, etc.-not just
rules.

* Define the given and inferred data and how they are acquired.

* There may be problems with consistency and completeness.

• There may be problems with fuzziness, since the computer requires
some bounds.

0 Record the conversations.

* Use two interviewers/notetakers to check for misunderstandings.

0 May find it helpful to use blackboard while discussing.

9 Learn to interview.

0 Watch the expert work.

a Record a detailed protocol of the expert solving at least one
prototypical case.

0 Can use real-time pressure solutions from the experiment as
strawmen for developing actual solutions.

a If he can't explain right then, come back to it; let him think
about his reasoning if not sure.

a Ask if he always/never does something; may spin off to special
cases.

a Restate the expert's rules; ask if this is what he meant.

• Ask many how and why questions.

0 Ask what he "really" does; ask what part of the book methods he
ignores.

0 Ask questions such as, "if we assume this, what will be bad about
the reasoning?"

4 Look for structure underlying the expert's changing verbalization.

0 Don't reveal representation/methodology to the expert.

* Don't necessarily consider any particular representation.

• Most expert talk will fall into if-then, but there will be special
kludges or many rules needed to handle certain cases.

50

• If a rule looks big, it is.

* If several rules are very similar, look for an underlying domain
concept.

If data are indeterminate, it is probably best to go to a higher
level, without defaults.

• May not have to set up example situations to avoid rambling.

* Tell the experts ahead of time what the meeting will discuss.

* Talk to the expert ahead of the actual interview.

* Let the expert know ahead of time what the (important) task is;

build up his enthusiasm and self-perception.

* Comment the rules, indicating theii sources.

* Engage the expert in the challenge of designing a useful tool.

* Give the expert something useful on the way to building a large
system.

• Run the system for the expert to make sure it is doing as he does.

* Don't let the expert play directly with a breakable prototype.

* Get the expert to criticize questions and the system.

* Show the expert some results of his knowledge on a prototype-good

for self-esteem and may precipitate useful criticism.

* Provide a "gripe" facility.

• Look for one acknowledged expert; maybe one of three will surface
as the best, or they will learn from each other.

• Some form of Delphi technique may prove useful.

• In rectifying multiple experts, watch for rivalry and deferring to
higher rank.

* Compare and contrast methodologies.

* Validation may be difficult with multiple experts.

• Resolving conflicting techniques with multiple experts may be
difficult.

* Identify the intended users of the final system.

* Involve the eventual users 4' the design.

51

Ask early how the expert would evaluate the performance of the

system.

* The user interface is crucial to the ultimate acceptance.

* Make I/O appear natural to the user.

* Insulate the expert and the user from technical problems.

* When testing, consider the possibility of errors in I/0 charac-
teristics, inference rules, control strategies, and test examples.

* Keep a library of cases presented to the system.

* Ask early how you will evaluate the success of your efforts.

52

